

Features

- Ultra-wide 300~1500V DC input voltage range (Transient 1600VDC last for 10s)
- Transient power 650W last for 3s
- High I/O isolation test voltage of 4000V AC
- Industrial grade operating temperature -40°C ~ +85°C
- High efficiency, low ripple & noise
- Input RPP, UVP, Output SCP, OCP, OVP
- Operating up to 5000m altitude
- Support 3+1 parallel redundancy, current sharing

Ideal Power's 36PV500-29Bxx 500W DC/DC Enclosed Power Supply Series are certified to RoHS & EN 62109-1/IEC 62109-1/BS EN 62109-1 Standards and comply with the relevant Efficiency Regulations. These are primarily used in Photovoltaic Industries, and customised solutions are available upon request.

Models

	Out	tput Power**	Nominal Output	Output Voltage	Efficiency at	Capacitive	
Part No.*	Steady	Transient (duration 3s)**	Voltage and Current (Vo/Io)	Adjustable Range ADJ (V)	1000VDC (%) Typ.	Load (µF) Max.	
36PV500-29B24	504W	650W	24V/21.0A	21.6-26.4	94	4400	
36PV500-29B48	30477	03077	48V/10.5A	43.2-52.8	54	2200	

Note: *Use suffix "W" for lead type version.

**24V transient power output needs to be≤24.48V; 48V transient power output needs to be≤48.96V.

Input Specifications

Parameter	Conditions		Min	Тур	Max	Unit
	Transient (10s)				1600	
Input Voltage Range			300		1500	VDC
	300VDC				3	_
Input Current	800VDC			1	- A	
Inrush Current	1500VDC	Cold start		280		
	Lockout activation range	255		275		
Input Under-voltage Protection	Lockout deactivation ran	275		295	VDC	
Input Reverse Polarity Protection	Available					
External Input Fuse	8A/1500VDC,					
Hot Plug			Unavailable			

Output Specifications

Parameter	Conditions	Conditions			Тур	Max	Unit
Output Voltage Accuracy	All load range	All load range			±1	±2	
Line Regulation	Rated load				±0.1	±0.5	%
Load Regulation	800VDC	800VDC			±0.5	±2	-
Ripple & Noise*	20MHz band	width (peak-to-pea	k value)		70	150	mV
	300VDC				1.5	3	
Stand-by Power Consumption	1000VDC	1000VDC			2	4	W
Consumption	1500VDC	1500VDC			3	5	-
Temperature Coefficient					±0.02		%/°C
Short Circuit Protection	Recovery tim disappears	Recovery time < 15s after the short circuit disappears			Constant current hiccup, continuous, self-recovery		
	24V			≤35V	Output voltage hiccup		
Over-voltage Protection	48V			≤60V			
Over-current Protection	All input volta	All input voltage range			200% lo, hi	ccup, self-	recovery
Over-temperature	800VDC,	Over-temperatu	re protection start	70		85	02
Protection**	rated load	Over-temperatu	re protection release	55		70	- °C
Minimum Load				0			%
Hold-up Time	Room tempe	Room temperature, full load 800VDC input			5		ms
Start-up Delay Time***	Room tempe	rature			1	3	S

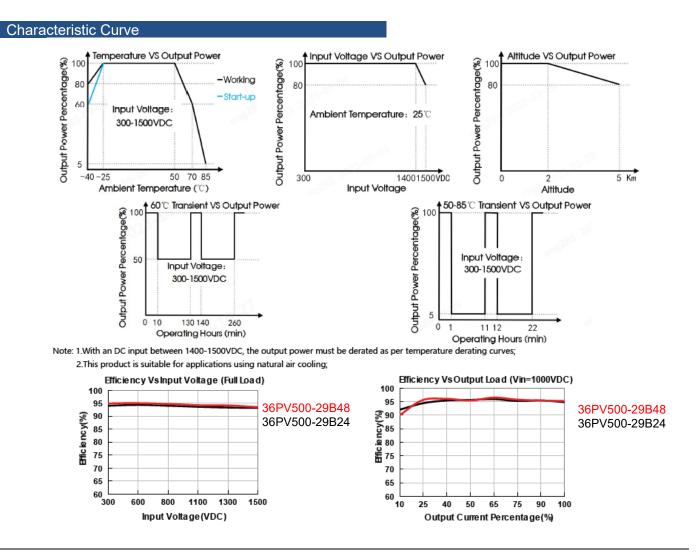
Note: *The "Tip and barrel method" is used for ripple and noise tests. Please refer to PV Converter Application Notes for specific information.

**Output voltage turn off, self-recovery after fault conditions are removed. The over-temperature point is the ambient temperature of the product.

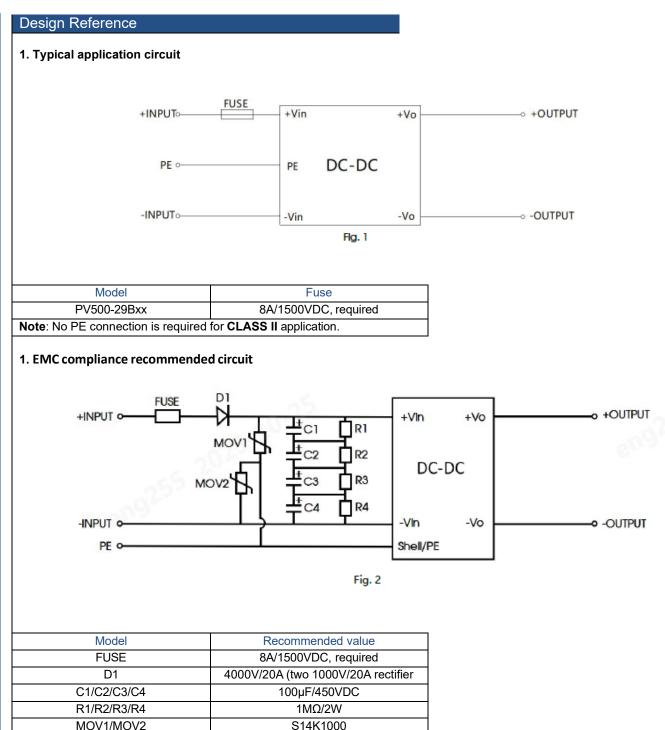
***Full input voltage/output load range (The cooling time between input power-off and power-on again is greater than 15s).

General Specifications

Parameter		Conditions		Min	Тур	Max	Unit
	Input-output	Electric strength test for 1min., leakage current <5mA					VAC
Isolation	Input - PE	Electric strength test for 1min., leakage current <10mA					
	Output - PE	Electric strength test for 1min., leakage current <5mA					
Insulation Typ	e		F	Primary an	d seconda	arv meet re	einforced
Insulation	Input-output					•	
Resistance	Input - PE	Testing voltage: 500VDC	- Testing voltage: 500VDC				MΩ
	Output - PE	-					
Operating Temperature				-40		+85	°C
Storage Temperature				-40		+85	_ 0
Storage Hum	idity	Non-condensing				95	%RH
Power Derating		Operating temperature	-40°C to -25°C	1.33			
		derating	+50°C to +70°C	2.0			%/°C
			+70°C to +85°C	3.67			_
		Input voltage derating	1400-1500VDC	0.2			%/VDC
		Altitude derating	2000- 5000m	6.7			%/Km
Safety Standa	ard	Desi	gn refers to CSA-C22.2 No.1	07.1-16. U	II 1741. FI	V/IFC/BS	EN62109-1
Safety Class		Door					(lead type)
MTBF		MIL-HDBK-217F@25°C			≥300),000 h	


Mechanical Specifications

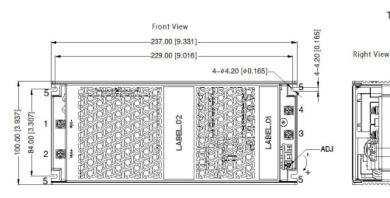
Case Material	Metal	
Dimensions	237.00 x 100.00 x 41.00mm	
Weight	1180g (Typ.)	
Cooling method	Free air convection	

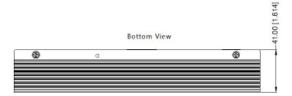

Electromagnetic Compatibility (EMC)

Parameter		Conditions		Level
Emissions	CE	CISPR32/EN55032	CLASS A	
	RE	CISPR32/EN55032	CLASS A	
	ESD	IEC/EN61000-4-2	Contact ±6KV/Air ±8KV	Perf. Criteria B
	RS	IEC/EN61000-4-3	10V/m	Perf. Criteria A
	EFT	IEC/EN61000-4-4	±4KV	Perf. Criteria B
Immunity	Surge	IEC/EN61000-4-5	Line to line ±2KV/line to PE ±4KV	Perf. Criteria B
			(See Fig. 2 for recommended circuit)	
	CS	IEC/EN61000-4-6	10Vr.m.s	Perf. Criteria A
	PFMF	IEC/EN61000-4-8	30A/m	

Note: PE connection is required for CLASS I (terminal); no PE connection is required for CLASS II (lead type) application.

Note: 1.For CLASS II application, no need to connect PE and no need to add the varistor (MOV1/MOV2);


36PV500-29Bxx Converter Series Up to 500 Watts


THIRD ANGLE PROJECTION ()

Dimensions and Recommended Layout

36PV500-29Bxx

 Pin–Out

 Pin
 Mark

 1
 -Vin

 2
 +Vin

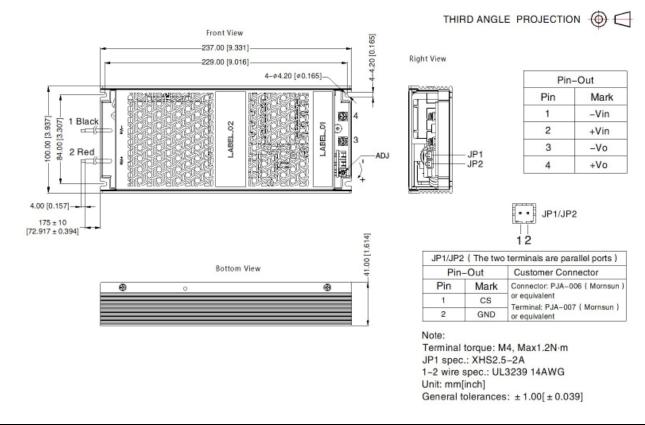
 3
 -Vo

 4
 +Vo

 5 (case)
 PE

JP1/JP2

JP1/JP2	JP1/JP2 (The two terminals are parallel ports)				
Pin	-Out	Customer Connector			
Pin	Mark	Connector: PJA-006 (Mornsur			
1	CS	or equivalent Terminal: PJA-007 (Mornsun)			
2	GND	or equivalent			


Note:

JP1

JP2

Terminal torque: M4, Max1.2N·m JP1 spec.: XHS2.5-2A Unit: mm[inch] General tolerances: ±1.00[±0.039]

36PV500-29BxxW

WARNING :

- 1. CAUTION: "To reduce the risk of fire, connect only to a circuit provided with 8 amperes maximum branch-circuit over-current protection in accordance with the National Electrical Code, ANSI/NFPA70."
- 2. WARNING: REPLACE ONLY WITH THE SAME RATINGS AND TYPE OF FUSE.
- 3. DANGER HIGH VOLTAGE.

Note:

- 1. For additional information on Product Packaging, please refer to <u>www.idealpower.co.uk</u> Packaging bag number: 58220326;
- 2. Unless otherwise specified, parameters in this datasheet were measured under the conditions of Ta=25°C, humidity<75% with nominal input voltage and rated output load.
- 3. All index testing methods in this datasheet are based on our company's corporate standards.
- 4. We can provide product customisation service. Please contact our technicians directly for specific information.
- 5. Products are related to laws and regulations: see "Features" and "EMC".
- 6. The output voltage can be adjusted by the ADJ clockwise to increase.
- 7. Our products shall be classified according to ISO14001 and related environmental laws and regulations and handled by qualified units.
- 8. If the final product application is connected to a photovoltaic array, the array needs to be grounded, and the voltage between the positive and negative poles of the product shall not be greater than 1500.

36PV500-29Bxx Series Parallel Redundancy and Current Sharing Application Notes

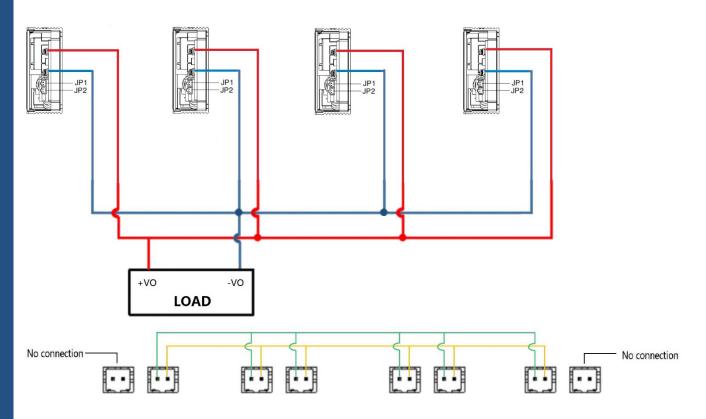
Parallel Operating

Redundancy

The output of the power module can be connected in parallel to achieve redundancy, thereby improving system reliability. The maximum power of the redundant system needs to be derated to ensure that the redundant system can still meet the rated load requirements when a power module fails. At present, the common practice is to build a redundant system using the N+1 method. That is, N+1 power supplies are connected in parallel. It supports the maximum load current N*Iomax, where Iomax is the rated output current of each power supply, for example, the rated output current of each power supply is 21A, and 3+1 are only connected in parallel to build a 3*21A=63A redundant system.

The power modules support 3+1 parallel redundant operation. When any power module in the parallel connection fails, other power modules can continue to work.

Note: When used in parallel, the maximum load current cannot exceed the maximum output current of a single power module at startup. Otherwise, the entire parallel power supply system will not be able to start and work normally. When any power supply in the parallel connection fails, its current-sharing connection terminal needs to be removed to prevent other power modules from being affected, resulting in a decrease in output voltage.


Ideal Power Limited 14 Larks Way, Tree Beech Enterprise Park, Gunn, Barnstaple, Devon, England, EX32 7NZ. www.idealpower.co.uk | salessupport@idealpower.co.uk | +44 (0) 1733 309865

Page 6 of 7

Current Sharing

Each power module has a current sharing connection terminal (JP1 and JP2). If the current sharing function is required, the current sharing terminals of all power modules must be connected when working in parallel. The wiring method of the current sharing function is shown in the figure below:

Note: The JP1 and JP2 ports of each power module have the same function, and there is no sequence.

The output voltage of each power module will affect the accuracy of current sharing. It is recommended that the output voltage of the power module be the rated voltage ±50mV. In practical applications, if the output voltage value needs to be adjusted, the output voltages of all

parallel-connected power modules need to be adjusted to the same voltage. The recommended voltage range is: target voltage value ±50mV.

After the output load of each power module is greater than 50% of the rated load, the current sharing accuracy is required to be ±5%. The formula for calculating the average current is:

Current Sharing Accuracy= $\frac{Io \max - Io \min}{Io \max} *100\%$

lo max

lomax: The maximum output current value of the power modules connected in parallel lomin: The inimum output current value of the power modules connected in parallel